Evolutionary Auto Tuning Algorithm For Pid Controllers

Posted By admin On 18.04.20
Evolutionary Auto Tuning Algorithm For Pid Controllers Rating: 3,7/5 1022 votes
Tuning

Mastercook recipes to download. The PID-controllers are often badly tuned, since it is too timeconsuming to calculate good PID-parameters at the time of deployment. A simple way of finding PID-parameters that give faster control loops is needed. To solve this problem the thesis proposes an autotuner based on the areamethod Method of Moments and the AMIGO tuning rules. Dec 24, 2015  EvoPid EvoPid is an auto-tuning PID controller from ETK. It uses evolutionary algorithms to search for optimal PID gains. There are a number of ways to tune a PID controller. PID gains can be calculated using hard rules and previously gathered data. Methods that use this approach include the Zigler Continue Reading EvoPid – Autotuning PID Controller.

Evolutionary Auto Tuning Algorithm For Pid Controllers Free

Evolutionary Auto Tuning Algorithm For Pid Controllers

Evolutionary Auto Tuning Algorithm For Pid Controllers For Windows 10

  1. Niculescu, S.I., Verriest, E.I., Dugard, L., Dion, J.D.: Stability and robust stability of time-delay systems: a guided tour. Lecture notes in control and information sciences. In: Stability and Control of Time-Delay Systems, vol. 228, pp. 1–71. Springer, London (1998)Google Scholar
  2. Desanti, J.: Robustness of tuning methods of based on models of first-order plus dead time PI and PID controllers (in Spanish). Universidad de Costa Rica, Escuela de Ingeniería Eléctrica (2004)Google Scholar
  3. O’Dwyer, A.: Handbook of PI and PID controller tuning rules, vol. 2. Imperial College Press, London (2009)Google Scholar
  4. Mora, J.: Performance and robustness of the methods based on second order models plus dead time tuning PID controllers. (in Spanish). Escuela de Ingeniería Eléctrica, Universidad de Costa Rica. (2004)Google Scholar
  5. Solera Saborío, E.: PI/PID controller tuning with IAE and ITAE criteria for double pole plants. (in Spanish). Escuela de Ingeniería Eléctrica, Universidad de Costa Rica. (2005)Google Scholar
  6. Liu, G.P., Daley, S.: Optimal-tuning PID control for industrial systems. Control Eng. Pract. 9(11), 1185–1194 (2001)CrossRefGoogle Scholar
  7. Tavakoli, S., Griffin, I., Fleming, P.J.: Multi-objective optimization approach to the PI tuning problem. IEEE C. Evol. Computat. 3165–3171 (2007)Google Scholar
  8. Chang, W.D., Yan, J.J.: Optimum setting of PID controllers based on using evolutionary programming algorithm. J. Chin. Inst. Eng. 27(3), 439–442 (2004)CrossRefGoogle Scholar
  9. Junli, L., Jianlin, M., Guanghui, Z.: Evolutionary algorithms based parameters tuning of PID controller. Chinese Control and Decision Conference (CCDC), pp. 416–420 (2011)Google Scholar
  10. Saad, M.S., Jamaluddin, H., Darus, I.Z.M.: PID controller tuning using evolutionary algorithms. WSEAS Trans. Syst. Contr. 4 (2012)Google Scholar
  11. Saad, M.S., Jamaluddin, H., Darus, I.Z.M.: Implementation of PID controller tuning using differential evolution and genetic algorithms. Int. J. Innov. Comput. I. Control. 8(11), 7761–7779 (2012)Google Scholar
  12. Hernández-Riveros, J., Arboleda-Gómez, A.: Multi-criteria decision and multi-objective optimization for constructing and selecting models for systems identification. WIT Trans. Model Sim. 55 (2013)Google Scholar
  13. Michail, K., Zolotas, A.C., Goodall, R.M., Whidborne, J.F.: Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system. Int. J. Syst. Sci. 43(10), 1785–1804 (2012)CrossRefzbMATHGoogle Scholar
  14. Whitley, D.: An overview of evolutionary algorithms: practical issues and common pitfalls. Inform. Softw. Tech. 43(14) (2001)Google Scholar
  15. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a new evolutionary computation: advances on estimation of distribution algorithms. In: Studies in Fuzziness and Soft Computing, vol. 192. Springer, Heidelberg (2006)Google Scholar
  16. Hernández, J.A., Ospina, J.D.: A multi dynamics algorithm for global optimization. Math. Comput. Model. 52(7), 1271–1278 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hernández-Riveros, J.-A., Villada-Cano, D.: Sensitivity analysis of an autonomous evolutionary algorithm. Lecture Notes in Computer Science. In: Advances in Artificial Intelligence, vol. 763, pp. 271–280. Springer, Heidelberg (2012)Google Scholar
  18. Yu, X., Gen, M.: Introduction to evolutionary algorithms. Springer, London (2010)Google Scholar
  19. Åström, K.J., Hägglund, T.: PID controllers: theory, design and tuning. Instrument Society of America (1995)Google Scholar
  20. Bohl, A.H., McAvoy, T.J.: Linear feedback vs. time optima control. II. The regulator problem. Ind. Eng. Chem. Proc. Dd. 15(1), 30–33 (1976)Google Scholar
  21. Hassan, G.A.: Computer-aided tuning of analog and digital controllers. Control Comput. 21(1), 1–6 (1993)Google Scholar
  22. Sung, S.W.: Lee, O.J., Lee, I.B., Yi, S.H.: Automatic tuning of PID controller using second-order plus time delay model. J. Chem. Eng. Jpn. 29(6), 990–999 (1996)CrossRefGoogle Scholar
  23. Lagunas, J.: Tuning of PID controllers using a multi-objective genetic algorithm, (NSGA-II). (in Spanish) (Doctoral dissertation) Departamento de Control Automático. Centro de Investigación y de Estudios Avanzados, México (2004)Google Scholar
  24. Åström, K.J., Hägglund, T.: Benchmark systems for PID control. IFAC Workshop on Digital Control. Spain. 181–182 (2000)Google Scholar
  25. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10(11), 1223–1241 (2002)CrossRefGoogle Scholar
  26. Li, Y., Ang, K.H., Chong, G.C.: PID control system analysis and design. IEEE Contr. Syst. Mag. 26(1), 32–41 (2006)CrossRefGoogle Scholar
  27. Vinter, R.: Optimal Control. Systems & Control: Foundations & Applications. Springer, London (2000)Google Scholar
  28. Montgomery, D.C.: Introduction to statistical quality control. Wiley, New York (2008)zbMATHGoogle Scholar
  29. Skolicki, Z., De Jong, K.: The influence of migration sizes and intervals on island models. In: Proceedings of the conference on Genetic and evolutionary computation ACM, pp. 1295–1302 (2005)Google Scholar
  30. Hansen, N.: Towards a new evolutionary computation: the CMA evolution strategy: a comparing review. In: Studies in Fuzziness and Soft Computing, vol. 192. Springer, Heidelberg (2006)Google Scholar
  31. Herreros, A., Baeyens, E., Perán, J.R.: Design of PID-type controllers using multiobjective genetic algorithms. ISA T. 41(4), 457–472 (2002)CrossRefGoogle Scholar
  32. Iruthayarajan, M.W., Baskar, S.: Evolutionary algorithms based design of multivariable PID controller. Expert Syst. Appl. 36(5) (2009)Google Scholar